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TORSIONAL OSCILLATION OF A NON-HOMOGENEOUS
ANISOTROPIC TUBE OF FINITE LENGTH
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Abstract—This paper treats the torsional vibrations in a finite circular tube of an anisotropic inhomogeneous
material. The general solution for the problem is obtained. Both free and forced torsional vibrations of tubes
can be treated as special cases of the problem. The values of the natural frequencies including the higher modes
are computed for such geometrical parameters as the ratio of the radii of a tube and the length. Also, the values
of natural frequencies in terms of the various values of the parameter of anisotropy are calculated. It is interesting
to note that the presence of the central hole in a tube has no effect upon the natural frequencies of the rigid mode,
but for the case of nodal modes the natural frequencies change with the thickness of the tube.

INTRODUCTION

THE torsional vibration of an isotropic circular cylinder has been extensively investigated.
A solution of elastic isotropic circular bars subjected to torsional vibration was obtained
by Love [1]. Torsional waves in elastic isotropic media have been considered by Kolsky [2]
and Clark [3]. Torsional oscillations in anisotropic media were discussed by Chakravorty
[4]. Recently, Wainwright [5] derived a more general solution for isotropic cylinders of
finite length: Stanisic and Osborn [6] treated the torsional vibration of an inhomogeneous
anisotropic hollow cylinder. (However, the authors of paper [6] used the stress—strain laws
for isotropic media instead of using the generalized Hooke’s laws for anisotropic media,
according to equation (1) of their paper; thus the results obtained cannot apply to aniso-
tropic media.) Paul [7] investigated the torsional vibration of a circular cylinder of piezo-
electric f-Quartz.

Many modern design components involve finite hollow cylinders with new materials
such as fiber-reinforced composite materials. Since these materials are essentially elastic
and anisotropic, and even inhomogeneous, the character of the anisotropy and of the
inhomogeneity must be taken into consideration in the stress analysis. Therefore, the
torsional vibration of an inhomogeneous, anisotropic circular tube of finite length will be
investigated in this paper. The result for an isotropic homogeneous solid shaft can be
obtained as a special case of the study. Moreover, it was noted by Kolsky [2] that some
complex modes of torsional vibration (other than the modes observed by Love [1], for
which each transverse section of a cylinder rotates as a whole) are involved in the motion.
For simplicity, in this paper the former modes will be called modal modes and the latter
ones will be called rigid modes. Here, the authors seck the determination of a more general
solution for the torsional vibration problem including all higher modes. The basic equations
of the problem are derived from the general theory of elasticity, so that both free and forced
torsional vibration of the tube can be treated as special cases of the study. Determination
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of the general solution for forced vibration requires the specification of either the appropriate
stress distribution or the possible displacement function at the two ends of the tube.
The effects of anisotropy and inhomogeneity of the material of the tube on the torsional
motion will be illustrated.

BASIC EQUATIONS

A cylindrically orthotropic inhomogeneous circular tube of finite length is considered.
The r, 6 and z of cylindrical coordinates are chosen as the reference frame. The equations of
motion are

+ lr + Tyt ! (o ) o
Orr T =T vz, —\0,—0q) = P25
N r 9,0 2,z r ) p 0{2
2 v
fre,r+;60,a+‘fez,z+;frs =P3E {1)
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Trzr +;792.0+Gz‘z+;rr: = PW

where {0;} are normal stress components, {t;;} are shearing stress components, {u, v, w|
are the components of the displacement vector in the directions r, § and z respectively,
p is the density, and ¢ is time.

The stress—strain laws for a cylindrically orthotropic medium are

o, = Cy18,+ Ca69+ Cra;.
g = C128,+ 85+ C138,,
0, = Cya6,+Csr389+ Ci38y, @
Toz = CaaVozs
Tz = CssVns
70 = Cos¥r
where the {C,;} are elastic moduli which are functions of the space coordinates, the {e;}

denote the components of normal strain, and the {y,} are components of shearing strain.
The strain—displacement relations in the cylindrical polar coordinate system are

1
&p = Uy, &g = ';(U‘O"}_u)s €y = Wogs

Yoz = Uz + ;W'G-‘
(3)

Vez = Wo kg,
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Tro = JUp Uy
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In the case of torsional vibration of a circular tube, the components of the displacement
vector can be assumed as
u=0 w=0, v=urz1) @
By equation (4), the components of strain (3) reduce to

8r=£6='gz:’))rz:0,

ov
e 5
Yoz 629 ( )
_ v
Tre = 83" r?

and the components of stress (2) reduce to
0,=03=0,=7,=0,

ov
L

% (6)

Tgz = C44

ov v
T9 = C66(5;'}')'

If the values of stresses from (6) are substituted in equation (1), the first and third
equations of (1) are satisfied identically, while the second equation of (1) yields

0C65 ég_g _ailf 1@-1}1 6C44 o C % _ 620 7
or 1orr ror 12 5z bz MTET e @

+
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For simplicity, it is assumed throughout this paper that the material moduli follow
the same distribution law, such as

Ces = Css 7™,
C44 = 644 e—kz, (8)
p=pe,

where Cq¢, C,4, p and k are constants.
The substitution of equation (8) in equation (7) yields

0 1dv v Cyforv v p 0%
5?*:5:7*@;(57”"5})= s ©)

SOLUTION OF THE PROBLEM

The solution of equation (9) is assumed to be of the form
o(r, z, 1) = R(2)Z(z)e’, (10)

where @ denotes angular frequency, and i = \/— 1.
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Then equation (9) becomes
1{d*R 1dR [p , 1 Cuo 1/d?Z dZ
il Suvieh W S S S — k) = e p?
R{dr2+r dr+(C‘66w rz)R) E;Z(dzz kdz) P (b
where p? is the separation constant. In turn, equation (11) yields
ﬂ+£ .(1‘5 + o — 1 =0
arr Trar \* TR T (12)
&’z dz
where
o = B +p?, 2 = S w? and y2 = P 2, 1
B . V=g (14)
The solution of equation (12) is
R(r) = AJy{ar)+ BY {ar), (15)
and the solution of equation (13) is
Z(z) = Ce**+ De??, (16)
where
A= 3k+ /K +4y)], and 7 = ik— /(K> + 47, (17

and 4, B, C and D are integration constants.
Thus, the displacement can be expressed as

vy(r, 2, 1) = {AJ {ar)+ BY (or)} {C e** + D e*"?} e (18)

Now, from equation (6), the expressions for the nonvanishing stress components are
obtained

Tpy = Caa {AJ(ar)+ BY,(ar)}{CL e¥' =9z 4 D" 4"~} giot, (19)
7,0 = —Cge{Aat (ar)+ BaYy(ar)}{Ce? ~97 4 p 3"~} giot, (20

It i< noted that the solutions given in equations {15) through (20) do not include the case
ot o = 0, for which equation (12) cannot be treated as a Bessel equation. For completeness,
the solution corresponding to « = 0 needs to be investigated. Putting o = 0 in equations
{12) and (13) yields

1 ;
R(r) = Aor‘f‘Bg‘;, Z{Z} == Co e}"’z—f-Do o (21}

where

Ao = k+/*2 — 48 Cs6/Cas)l,
lo = %[k"\/ k* ”452(666;[644) s

and Ag, By, Co and D, are the integration constants.
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In this case, the expression for the displacement is

vy(r,z,t) = (A0r+ B, ;) (Co €M% + Dy e87) e, (23)
and the corresponding stress components are
Tge = Can {Aor + %9} {Cohp e®0 ™07+ DAy e —Rz} giot, (24)
and
Ty = — aﬁéggg{cg gl#=hz g p, et~ Rz} gier, 25

The inner lateral surface, r = a, and the outer lateral surface, r = b, of the tube are free
from tractions. The boundary conditions on the surfaces are

T9=0 at r=ab. (26)
Substitution of equation (20) into equation (26) yields the characteristic equation
Jo(@a)Yy(ab) — Jo(ab) Y (xa) = O, 27

where the o must be a root of equation (27). Let the set of roots be a,(i = 1,2,...) which
are known to be infinite in number, all simple and real [8]. Only the first four roots are
calculated for various ratios of radii ¢ = a/b, and listed in Table 1. For each characteristic
value «;, the relation existing between the integration constants A4; and B; is

B; = HA;, (28)
where

Jala@) _ Ja(ab)
Yyaa)  Ya(ab)

In the same manner, from the boundary conditions (26), equation (25) yields
B, = 0. (29)

H = -

TABLE 1. FIRST FOUR ROOTS OF THE CHARACTERISTIC EQUATION

a
( LetZ =ab, ¢ 5
] Z, z; Z3 Z,

0-00 5136 8417 11-620 14796
005 5136 8420 11-630 14-821
010 5142 8457 11-739 15-444
0-20 5222 8-804 12:494 16:190
0-30 5470 9-600 13-905 18-290
0-40 5966 10-894 15997 21-164
0-50 6-814 12-855 19-046 25281
0-60 8227 15904 23693 31-515

070 10-720 21070 31-501 41-950
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Finally, the general expression for the displacement is

o(r,z. 1) = v+, = { Y. CFar)e*+ Y DF(or)e™ "+ Cor e+ Dyr e“‘:} e’ (30)
i=1 i=1

where the function F;{x7) is defined as
Fy(ayr) = Jy(ar)+ H; Yy (o). (31)

The non-vanishing stress components can be expressed as

To, = 644{ -2:1 Cll;Fl. (ot,-r) e(“— kiz + Co/q..é)r e‘”"k)z
(32)
+ ~ZI D;‘A;"Fl (ocir) e(l(”* kyz + Dokgr e().ii —klz} eimr’
=
—~ hod I o 2 .
T,9= —C 56{ Y CaFyplar) e =4 Y DaFylor)e™ *"’z} ghet (33
i=1 i=1

where the function F,(«;#) is defined as
Fz((xir) = jz(&ir)'*‘ Hi Yz(air). (34)
Let {F,(a;)} be defined as a set of the functions

Fy(ayr), Fyloear), ..., Fylogr), - .,
and
G; = %{bz[ﬂ(%bﬂz“azﬁFl(“ﬂ)}z}w (i=12..) (35)
It is shown in the appendix that F,(a,r) form a set of continuous orthogonal functions
on a closed domain [a, b] related to the positive integrable weight function r; ie.

[ o 0 87 = G G6

b

where &, denotes the Kronecker delta defined by

. {1 (m = n),
émn:‘
0 {(m# n)

Also note that from the recurrence formulas [9],

d i —_ n
E{z J(2)} = 2", (2)

and d
-d—Z{Z"Y,.(Z)} = 2"Y,_,(2),

and equation (27), the following useful formula is obtained:

Jm rzFl(oc,-r) dr = 0. (37)
b
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The constants Cy, Do, C; and D, (i = 1,2,...) in equation (30) are determined by the
boundary conditions at the ends of the cylinder. Assume that the shearing stresses are
specified at both ends as

10.(r, 0, 1) = 7o(r) ei.“", 38)
TBz(ra La t) = TL(r) elmt,

where 74(r) and 7,(r) are prescribed functions. '
By the substitution of equation (32) in equations (38) and the use of equations (36} and
(37), the integration ccnstants are readily obtained:

4e®E b riro(rydr—e*t fLrPr (r) dr)
- Caaloe —e)b*—a) ~

4(e*t (b rPry(r) dr— e b rizg(r) dr)
o 644%(3'181' —e*h)(b* ~a*) ’

Co

(39
c &ML [ y1o(r)F, (ar) dr —e* [ e, (r)F, (ar) dr
P = Coaifert—e*hG,
D, - et b rey(r)Fy(or) dr — et 2 reo(r)Fy(ar) dr (i=12..)

6441{21{512'1. ___ ﬁ}":L}G; ?

If, instead of the stresses, the components of displacement are specified at both ends
of the tube, then, for example,

or,0,1) =0
_ (40
v{r, L, t) = Vi (r)e’.
Substitution of equation (30) into equation: (40) yields
b Vi(r)Fy(ar)d
€ = —p,~ lAOE@EDd
G!{ei,l. . e).,L) (4}}
4 {22V (r)dr
Co= —Dy = fa" )

(b4 _ a4) (eabL — el:{l,) )

FREE TORSIONAL VIBRATION

The case of free torsional vibration of a tube can be considered as a special case of
the previous study with the rigid mode (« = 0) and the modal mode (x # 0) considered
separately. All the boundary surfaces of the tube must be free from tractions: i.e.

‘E@z(?', 0! t) = tﬂz(r’ L, t) = 'Cre(a’ Z, t) = Trﬂ(b3 z, I) = 0 (42)

Thus the functions 7, and 7, defined in equations (38) must vanish everywhere.

(i) Rigid mode (o = Q)

Consider the rigid mode of the free torsional vibration of tubes. From equations (39),

it is readily seen that the constants C, and D, cannot be determined, and that the constants
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Ci=D; =0,(i =1,2,...). Also, in order to have all surfaces of the tube free from tractions,
the foliowing relation must be satisfied :

el — el = 43)

It.is clear that the values of 45 and A5 must be complex conjugates, for otherwise
equation (43) yields %~= 43, and the solutions obtained in previous sections are not correct.
Thus, let § be /[4*(Cq6/Caa) —k*]: then equation (22) can be rewritten as

Ao = tk+1i0, Ay = $k—1id. (44)
Equation (43) results in
5=’—’§* (n=+1,+2,. ).

The natural frequencies of rigid modes can be obtained as

=S )] s
T JeCeN LIL] T2 T
and the corresponding modal shape is
v = E,re*?|ksin %—-2% cos ?—EE) e, (46)

where E, denotes the amplitude of oscillation.
For a homogeneous isotropic circular tube, ie. for k = 0 and C,, = C¢¢ = G, the
shear modulus, equations (45) and (46) yield

o.n = p L

as obtained by Love [1].

(i1) Nodal mode(a # 0)

For this special mode of motion, in the circular tube there exists not only the com-
ponent 7,, but also the component 1, of shearing stress. Moreover, the modes of torsional
vibration are more complex than the ones of the previous case. Now from equation (39)
it may be readily seen that Co = Dy, = 0 and that the constants C;and D; (i = 1,2,...)
cannot be determined. In order to satisfy the boundary conditions {42} it is required that

Ml oL — i=12,..) (47)

where 4; and A} are defined in equation (17) except for the subscript. The subscript i denotes
that the values of A’ and 1” correspond to the characteristic value «; which is a root of
equation (27). As argued in the previous case, it can be concluded that 4; and A7 must be
complex conjugates. Therefore, the natural frequencies associated with the nodal mode of
torsional vibration of tubes are

Coo , K min?

w; =\/(—€—t‘—‘-)i of +— 45 m= +1, +2 (48)
i,m ﬁé(,a z;; 4 Ll ) R -7

where a; (i = 1,2,...)are the roots of equation (27).

v nnz .
and - = E cos—e'¥,
r L
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The corresponding modal shapes and stress components are

__2_ —— F " euur
08— o)

" . omnz  _mE mnz]
tim = Eqme*/"<ksin

~ (o e lKr PR\ mmz]
(TG:)i.m = E“'mC44 {J}(aﬂ')“" Yj( ” )YI(C( } {e )‘”;2( 3 ‘+"7 L,z ) sSin —“l:‘"} [ rn (49)
mnrz  mm mnz tont Joloyal
(Tdim = —CooEime ™ © ’Z{R sin —Lw—ZT ST} X € cx‘{Jz(otir}——wz( ” )Y_{cx r)}

The equations of natural frequency (45) and (46) are rewritten in non-dimensional

forms as
wG "

(Coaipb?t v {12nn)* + $il/Ade et (50)

4/

TaWTEE w/i}smbz}; = JIZF+[2mn) +gf)/Ad 2, (51)
44

where ¢, = kL, ¢ = Coo/Cis» $e = L/b, ¢ = ajb, and T; = ;b are all non-dimensional
parameters.

The ¢, characterizes the homogeneity of the material of the circular tube. In practice,
—05 < ¢, < +0-5. The parameter ¢, describes the anisotropy of the medium. For the
case of isotropic media the parameter ¢, equals unity. According to the data given by
Mason [10], 04 < ¢, < 2+6. The ratio of radii ¢ is assumed to be 0 < ¢ < (7. When
¢ = 00 the body is a solid cylinder. The range of the length parameter ¢, considered is
04 < ¢, <25

The numerical values of natural frequencies were calculated using an IBM 360 digital
computer. Figure 1 shows the effects of anisotropy at the lowest natural frequency of the
nodal modes o, ; with ¢, = 0 and ¢, = 1-0, for various values of ¢. It is clear that the
influences of anisotropy of material on natural frequencies of torsional vibration are very
significant. The effects of the ratio of radii ¢ at wy,; and w, ; , the lowest natural frequencies
of torsional vibration for the rigid mode and for the nodal mode respectively, are shown in
Fig. 2. Note particularly that ¢ does not affect the lowest natural frequency of the rigid
mode wg ;. Therefore, the frequencies of this particular mode are independent of the inner
radius, even if the inner radius is zero. However, the natural frequencies of the nodal mode
w; , are changed appreciably by the change of ¢ values. The effects of the length parameter
¢, 0n w; ; are shown in Fig. 3. For circular rings (04 < ¢, < 1-0) the influences ¢, on the
natural frequency w, , are guite significant, while for long circular tubes (¢, > 2:0) the
effects are insignificant. Since the value of @7 is very small in comparison with other terms
inside the square root of equations (50) and (51), the negligence of ¢ does not change the
natural of the equations. Thus, the effects of the parameter of homogeneity ¢, on the
natural frequency are very small and negligible.

FORCED VIBRATION

Consider a circular tube with the end - = 0 fixed and the other end = = L subjected
either to a displacement or to an appropriate stress distribution.
If

or,0.t) =0
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F1G. 1. The influences of anisotropy of material at the natural frequency,

and
Tolr, L, 1) = K re™,
then the substitution of equations (30) and (32) into equation (32) yields
Ci=-D;=0, (i=12..)

C = D = :"‘#“f—*;‘ﬁ,—“ .
‘ P Caaldy - 251
It is readily determined from equations (30), (32) and (33) that

K . ekLr[e).(',: _ eiti%:] eiwt

_ Kyrlh e — i et e
e e e g &L
T = 0.

(53)

(54)

The motion of this particular mode is associated with the motion wherein each transverse
section of the cylinder rotates rigidly. This fact may be seen clearly from equation (54).
The natural frequencies associated with this kind of mode of motion are given by equation
(50). As the frequency of the driving force w approaches one of the values w,, given by
equation (44), the amplitude of oscillation K, grows without limit and a resonance occurs.
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APPENDIX

Orthogonality of the eigenfunctions
Suppose the differential operator of equation (12).

1df d , |
T:ra(?a;)+( “;j)q iA'I}

is to be defined on the domain [a, b] by the boundary conditions {25),

d_! (r)

———u

dr r
where u is an clement in the domain of T. Assume u and v are the elements in the domain

of T: by definition the scalar product of two functions with respect to the positive weight
function r is

=0, (A-2)

r=aq
r=4%

b
o Tuy = f re{Tu) dr. (A-3)
With integration by parts and the use of conditions (A-2), the scalar product (A-3)
yields
dr e
Ty = ub)| o—5 | —uwtw)| =5 | 4 (Teud (A-4)
dr r=b dr r=ua
Then

o, Tuy = (Teou) (A-5)

where v satisfies the conditions

= 0. (A‘é}

These boundary conditions are equivalent to (A-2). Thus the operator T deﬁneq by
equations (A-1) and (A-2) is a self-adjoint operator with self-adjoint boundary conditions.
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TueoreM. If T is a self-adjoint operator with self-adjoint boundary conditions, the eigen-
functions of T form an orthogonal set.

PrOOF. Let u; and u, be two arbitrary distinct eigenfunctions of the differential operator T,
and 4; and /; be the corresponding eigenvalues. Thus

Tu; = Au; and Tu, = L. (A-7)
From equation (A-5)
0 = Cuyy Ty —Tuy, uy
= (A~ ;) u;, ).
If A, # 4;, equation (A-8) implies that {u;, u,» = 0. Then the theorem is proven.

(A-8)

(Received 26 March 1969 revised 23 June 1969)

AbcrpakT—PaboTa Kacaercs XpyTHJIbHBIX KoneOauMd B KOHEYHOH Kpyrnoit Tpyde U3 aHH3OTPONHOro
HeonHOpoAHOTo Matepuana. ITonyyaercs obuee pewenre 3aaa4n. Tak ¢BoOOaHbIE KaK U BBIHYKOEHHbIE
KpyTHAbHbIE KoJleGannst TPYO MOXKHO PacCMaTpPUBATh B KAYECTBe CHELMANIBHBIX CiiydaeB 3ajauv. Onpenen-
AFOTCA IHAYEHMA CBOOOOHBIX YAcCTOT 3AKTIOYAIOIMX BHABI KONeOaHuii BHICIIMX DAOOB IS TAKHX TEeoMeT-
PHMECKHX TaPaMETPOB KaK OTHOUICHHE PAanuyca TpyOst ¥ ee aiunbl. Periarorcs, Takxe, 3Ha4eHus CBobonHbIxX
YACTOT B BBRIPAXKEHMSX IUTA PA3HBIX 3HAueHwuil mapamerpos anuiloTponuu. MntepecHo, 4To Hanmuyue LicHT-
PaILHOTO OTBepCTHA B TPyGe He BhI3biBaeT Hukororo »ddexTa Ha cBoBOAHBIC YACTOTHI HKECTKOTO PEXNMA.
B cnyuae y3a0BBIX BHAOB KoJiebanHil, H3MEHAIOTCH CBODOAHBIC YACTOThI C TOJMIUIMHON TPYOHI.



