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TORSIONAL OSCILLATION OF A NON-HOMOGENEOUS
ANISOTROPIC TUBE OF FINITE LENGTH

CHI-LUNG HUANG and C. C. YEN

Kansas State University, Manhattan, Kansas 66502

Abstract-This paper treats the torsional vibrations in a finite circular tube of an anisotropic inhomogeneous
materiaL The general solution for the problem is obtained. Both free and forced torsional vibrations of tubes
can be treated as special cases of the problem, The values of the natural frequencies including the higher modes
are computed for such geometrical parameters as the ratio of the radii of a tube and the length. Also, the values
of natural frequencies in terms of the various values of the parameter of anisotropy are calculated. It is interesting
to note that the presence ofthe central hole in a tube has no effect upon the natural frequencies of the rigid mode,
but for the case of nodal modes the natural frequencies change with the thickness of the tube,

INTRODUCTION

THE torsional vibration of an isotropic circular cylinder has been extensively investigated.
A solution of elastic isotropic circular bars subjected to torsional vibration was obtained
by Love [1]. Torsional waves in elastic isotropic media have been considered by Kolsky [2J
and Clark [3]. Torsional oscillations in anisotropic media were discussed by Chakravorty
[4]. Recently, Wainwright [5] derived a more general solution for isotropic cylinders of
finite length: Stanisic and Osborn [6J treated the torsional vibration of an inhomogeneous
anisotropic hollow cylinder, (However, the authors of paper [6] used the stress-strain laws
for isotropic media instead of using the generalized Hooke's laws for anisotropic media,
according to equation (1) of their paper; thus the results obtained cannot apply to aniso­
tropic media,) Paul [7J investigated the torsional vibration of a circular cylinder of piezo­
electric fJ-Quartz.

Many modern design components involve finite hollow cylinders with new materials
such as fiber-reinforced composite materials, Since these materials are essentially elastic
and anisotropic, and even inhomogeneous, the character of the anisotropy and of the
inhomogeneity must be taken into consideration in the stress analysis. Therefore, the
torsional vibration of an inhomogeneous, anisotropic circular tube of finite length will be
investigated in this paper. The result for an isotropic homogeneous solid shaft can be
obtained as a special case of the study, Moreover, it was noted by Kolsky [2] that some
complex modes of torsional vibration (other than the modes observed by Love [1], for
which each transverse section of a cylinder rotates as a whole) are involved in the motion.
For simplicity, in this paper the former modes will be called modal modes and the latter
ones will be called rigid modes. Here, the authors seek the determination ofa more general
solution for the torsional vibration problem including all higher modes. The basic equations
of the problem are derived from the general theory ofelasticity, so that both free and forced
torsional vibration of the tube can be treated as special cases of the study. Determination
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ofthe general solution for forced vibration requires the specification ofeither the appropriate
stress distribution or the possible displacement function at the two ends of the tube.
The effects of anisotropy and inhomogeneity of the material of the tube on the torsional
motion will be illustrated.

BASIC EQUAnONS

A cylindrically orthotropic inhomogeneous circular tube of finite length is considered.
The r, eand z of cylindrical coordinates are chosen as the reference frame. The equations of
motion are

(1)

where {Gi} are normal stress components, {Ljj} are shearing stress components, {u, v, w]
are the components of the displacement vector in the directions r, (J and z respectively,
p is the density, and t is time.

The stress-strain laws for a cylindrically orthotropic medium are

(Jr = C11E:r + C12Be+ CBB,.

Ge = CIZer+Cnee+C23ez.

(Jz = C13E:r+C23ee+C33Bz,
(2)

where the {Cij} are elastic moduli which are functions of the space coordinates, the {ei}
denote the components of normal strain, and the {)Iij} are components of shearing strain.

The strain--displacement relations in the cylindrical polar coordinate system are

1
BO = -(v'e+ u),

r

1
YOz = v·z+-w·o.

r

frz = w·r+u·z•

1 v
frO = -u'O+v'r--'

r r

(3)
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In the case of torsional vibration ofa circular tube, the components of the displacement
vector can be assumed as

u = 0, w = 0, v v(r, z, t). (4)

By equation (4), the components of strain (3) reduce to

ov
Y9z = OZ'

and the components of stress (2) reduce to

(5)

(6)

'r9 = C66(~~ -~).
If the values of stresses from (6) are substituted in equation (1), the first and third

equations of (1) are satisfied identically, while the second equation of (1) yields

OC66(ov _!!-) +C66 (CPV +! ov_~) +OC44 OV+ C4/
2

V = 02V
. (7)

or or r or2 r Or r 2 OZ oz OZ2 P ot2

For simplicity, it is assumed throughout this paper that the material moduli follow
the same distribution law, such as

C C- -kz
66 = 66 e ,

C44 = (;44 e- kz
,

p = jj e- kz,

where C66 , C44 , Pand k are constants.
The substitution of equation (8) in equation (7) yields

SOLUTION OF TIlE PROBLEM

The solution of equation (9) is assumed to be of the form

v(r, z, t) = R(z)Z(z)e iwt ,

where (j) denotes angular frequency, and i = J-1.

(8)

(9)

(10)
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Then equation (9) becomes

1(d2R 1dR (p 2 1)) C44 1(d2Z dZ)R dr2 +-;- dr + C
M

OJ - r2 R = -c;;;, Z dz2 -k dz = _p2

where p2 is the separation constant. In turn, equation (11) yields

d
2
R 1dR (2 1)--+- + IX - - R = 0,

dr2 r dr r2

d2Z dZ '2
--k--y 2=0
dz2 dz '

where

(11 )

(12)

(13)

(14)

The solution of equation (12) is

R(r) = AJt(lXr)+BYi(lXr),

and the so.tution ofequation (13) is

2(z) = C eA':: +D eX''',

where

A' = ifk+J(k2+4y2)], and A" = jIk-J(k2+4y2)],

and A, B, C and D are integration constants_
Thus, the displacement can be expressed as

Vt(r, z, t) = {AJ1(ar)+ BY1(lXr)} {C eA'" +D e""%} eimf
•

(1S)

(16)

(17)

(18)

Now, from equation (6), the expressions for the nonvanishing stress components are
obtained

'to% = C44{AJ1(ar)+BYt(ar)}{CA.' e(A'-k}z+DA" e(A"-k)z} eimt, (19)

r~6 = -C66 {AaJz(ar)+ BIXY2(ar}}{C e(l'-k)z +D eO:'-kl,,} eirot • (20)

It j<:: noted that the solutions given in equations (15) through (20) do not include the case
of IX 0, for which equation (12) cannot be treated as a Bessel equation. For completeness,
the solution corresponding to IX = 0 needs to be investigated. Putting IX = 0 in equations
(12) and (13) yields

1
R(r) = Aor+Bo-,r

where

(21)

tl'o = ![k+Jk2 -4p2(C66IC44)],

)'0 = t[k-Jk2 -4p2(C66/C44)],

and Ao, Bo, Co and Do are the integration constants.

(22)
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In this case, the expression for the displacement is

v2(r, Z, t) = (Aor+ BoM (Co eJ.bz +Do e).OZ) eiWl
, (23)

and the corresponding stress components are

roz = C4.~ {Aor +~o} {CoAo e().b -k)z +DoAo e(AO -k)z} eimr
, (24)

and

(25)

The inner lateral surface, r = a, and the outer lateral surface, r = b, of the tube are free
from tractions. The boundary conditions on the surfaces are

Tr 9 = 0 at r = a, b.

Substitution of equation (20) into equation (26) yields the characteristic equation

J2(ow) Y2(ab) - J2(ab) Y2(cw) = 0,

(26)

(27)

where the IX must be a root of equation (27). Let the set of roots be ai(i = 1,2, ...) which
are known to be infinite in number, all simple and real [8]. Only the first four roots are
calculated for various ratios of radii 4> alb, and listed in Table 1. For each characteristic
value aj' the relation existing between the integration constants Aj and Bj is

(28)

where

H
j
= _J2(aj a) = _J2(aj b)

Y2(lXp) Y2(aj b)"

In the same manner, from the boundary conditions (26), equation (25) yields

~3Q ~

TABLE I. FIRST FOUR ROOTS OF THE CHARACTERISTIC EQUATION

(Let 1:: = ab, <p = ~)

<p 1::1 1:2 1: 3 1::4

0-00 5·136 8'417 11-620 14'796
0·05 5·136 8-420 11-630 14'821
0·10 5·142 8·457 11'739 15·444
0·20 5·222 8·804 12'494 16'190
0·30 5·470 9·600 13-905 18·290
0·40 5·966 10·894 15·997 21·164
0'50 6·814 12-855 19·046 25·281
0-60 8·227 15'904 23'693 31'515
0·70 10-720 21·070 31'501 41'950
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(32)

Finally, the general expression for the displacement is

v(r,z,t) = Vt +V2 ttt CiFt(a/)eliz+ itt DiFt(lXir)eliz+corelbz+DorelKZ} eimt
, (30)

where the function F1(cq) is defined as

Ft(a/) = Jt(IX/)+H j Yt(a/). (31)

The non-vanishing stress components can be expressed as

Toz = C44Lt
l

CiA;Ft(lXir ) e(,l;-k)z +CoAor e(lb-k)z

+ f DiAi'Fl(air) e(Ai'-k)z + DoA;)r e(}.O-klZ} e iIDE,

i~ t

T = -C {~ca.F (rx..r)e(li-k)z+ ~ D:r:x.F (oc.r)e(li~k)Z} eiIDE
rIJ 66 L, • I 2 I L, ,,2 , ,

i= t i= I

where the function F2(a;r) is defined as

F2(oc;r) = J 2(air)+Hi Y2(oc;r).

Let {Ft(air)} be defined as a set of the functions

Ft(at r), Fl(oc2r), ... , Fl(et"r), ... ,
and

(33)

(34)

(i = 1,2, ...). (35)

It is shown in the appendix that FI(anr) form a set of continuous orthogonal functions
on a closed domain [a, b] related to the positive integrable weight function r; ie.

La rFI(a"r)FI(amr) dr GA,,"

where <>m" denotes the Kronecker delta defined by

{
I (m = n),

o (m =1= n).

Also note that from the recurrence formulas [9],

and

~{z"Y,,(z)} = z"Yn-t(z),
dz

and equation (27), the following useful formula is obtained:

(36)

(37)
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The constants Co, Do, Cl and Di (i = 1,2, ...) in equation (30) are determined by the
boundary conditions at the ends of the cylinder. Assume that the shearing stresses are
specified at both ends as

't'ez(r,O, t) = 't'o(r) eiw
/,

't'ez(r, L, t) rdr) e'm/,
(38)

(39)

(i = 1,2, ...).

where 't'o(r) and 'tL(r) are prescribed functions.
By the substitution of equation (32) in equations (38) and the use of equations (36) and

(37), the integration ccnstants are readily obtained:

4(e"SL s: r 2 't'0(r) dl'-ekL s: r2 't'L(r) dr)
Co;;: . C44A.O(e"SL-e"bL)(b4-a4) ,

4(ekL s: r2'tL(r) dr_eAoL s: r2't'(l(r) dr)
Do = C44A.Z(e"oL-e"bLHb4 a4 ) ,

e,,('L S: r'to(r)Ft(ocl) dr-ekL S: r't'L(r)Fl(ocir) dr
Ci = --- C44A;(e";·[-e·liL)Gi

ekL S: r't'L(r)Ft(ocir) dr_eA;L S: r't'o(r)F1(ocir)dr
Di = C44A.;'{e).;·L -e,,;L)G

i
'

If, instead of the stresses, the components of displacement are specified at both ends
of the tube, then, for example,

v(r, 0, t) = °
v(r, L, t) ."'" VL(r) eiM.

Substitution of equation (30) into equation (40) yields

s: r VL(1')Fl (oclr) dr
C· = -D· = (i = 1,2, ...),

I , GJe":L-e.i'L)

4 S~ 1'2 Vdr) dr
Co = -Do = (b4 _a4)(c"OL_ eAOL)

(40)

(41)

FREE TORSIONAL VIBRAnON

The case of free torsional vibration of a tube can be considered as a special case of
the previous study with the rigid mode (oc = 0) and the modal mode (IX '1: 0) considered
separately. All the boundary surfaces of the tube must be free from tractions: Le.

t'8z(r,0, t) 7:eAr, L, t) = Tr8(a, z, t) = Tre(b, z, t) = O. (42)

Thus the functions 1.'0 and 'CL defined in equations (38) must vanish everywhere.

(i) Rigid mode (Ci = 0)

Consider the rigid mode of the free torsional vibration of tubes. From equations (39),
it is readily seen that the constants Co and Do cannot be determined, and that the constants
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Ci = Di = 0, (i = 1,2, ...). Also, in order to have all surfaces of the tube free from tractions,
the following relation must be satisfied:

(43)

It is clear that the values of Ao and A~ must be complex conjugates, for otherwise
equation (43) yields Ao= AO' and the solutions obtained in previous sections are not correct.
Thus, let Dbe .J[4p2(C66/C44)-k2]; then equation (22) can be rewritten as

Ao=!k+i6, Ao==ik-ib. (44)

Equation (43) results in

(n = ±1, ±2, ...).

The natural frequencies of rigid modes can be obtained as

WO,n = .J(~C466)J[(n:r +(~rl
and the corresponding modal shape is

(45)

(46)(
. mrz mr mrz).v;::; E rekz

/
2 ksm--2-cos- e'Wl

n L L L '

where En denotes the amplitude of oscillation.
For a homogeneous isotropic circular tube, i.e. for k = 0 and C44 ;::; C66 = G, the

shear modulus, equations (45) and (46) yield

WO,n = J(~)(":) and
v mrz .

= E cos--elt
'"r n L '

as obtained by Love [1].

(ii) Nodal mode (IX 1= 0)

For this special mode of motion, in the circular tube there exists not only the com­
ponent "rz but also the component "19 of shearing stress. Moreover, the modes of torsional
vibration are more complex than the ones of the previous case. Now from equation (39)

it may be readily seen that Co = Do = 0 and that the constants Ci and Di (i = 1,2, ...)
cannot be determined. In order to satisfy the boundary conditions (42) it is required that

(i = 1,2, ...), (47)

where Ai and ..i.i' are defined in equation (17) except for the subscript. The subscript i denotes
that the values of A' and 1" correspond to the characteristic value (Xi which is a root of
equation (27). As argued in the previous case, it can be concluded that A.i and A.i' must be
complex conjugates. Therefore, the natural frequencies associated with the nodal mode of
torsional vibration of tubes are

J{ - 2( - 2 22)}(C 44) Cbb 2 k m 11:

Wi,m = pC
66

C:(Xi +4+---U- '

where (Xi (i = 1,2, ...) are the roots of equation (27).

m = ±1, ±2, ... (48)
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Wi,m /I ~1 [(2 )2 A 2]/4A, A,2} (51)(C441i5b1yl=Yt':"i+ mrc +</)k 'l-'o'l-'e' -

where 1>k = kL, <Pc = C(){,/C44 , 1>e = Lib, 1> = alb, and 1:; = !Y.ib are all non-dimensional
parameters.

The 1>k characterizes the homogeneity of the material of the circular tube. In practice,
-0,5 s: 1>k ~ +0,5. The parameter 1>0 describes the anisotropy of the medium. For the
case of isotropic media the parameter 1>c equals unity. According to the data given by
Mason [10], 0-4 ::;; 1><: ~ 2'6. The ratio of radii 1> is assumed to be 0 s: 1> S; 0·7. When
1J = 0·0 the body is a solid cylinder. The range of the length parameter 1>" considered is
0·4 s; 1>" s; 2-5.

The numerical values of natural frequencies were calculated using an IBM 360 digital
computer. Figure I shows the effects of anisotropy at the lowest natural frequency of the
nodal modes W1,1 with 1>k = 0 and 1>e = 1'0, for various values of 1>. It is clear that the
influences of anisotropy of material on natural frequencies of torsional vibration are very
significant. The effects of the ratio of radii 1> at WO,I and W1,1' the lowest natural frequencies
of torsional vibration for the rigid mode and for the nodal mode respectively, are shown in
Fig. 2. Note particularly that 1> does not affect the lowest natural frequency of the rigid
mode wo, 1 . Therefore, the frequencies of this particular mode are independent of the inner
radius, even if the inner radius is zero. However, the natural frequencies of the nodal mode
Wi.m are changed appreciably by the change of 1> values, The effects of the length parameter
4>e on (1)1.1 are shown in Fig. 3, For circular rings (0,4 5: <Pe ::;; 1-0) the influences <Pe on the
natural frequency WI,l are quite significant, while for long circular tubes (4)., > 2-0) the
effects are insignificant. Since the value of 1>f is very small in comparison with other terms
inside the square root of equations (50) and (51), the negligence of 1>~ does not change the
natural of the equations. Thus, the effects of the parameter of homogeneity 1>k on the
natural frequency are very small and negligible.

FORCED VIBRATION

Consider a circular tube with the end;: = o fixed and the other end z = L subjected
either to a displacement or to an appropriate stress distribution.

If

vir, 0, t) = 0
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10,0

4> =0.6

4>=0.4

4> =0.5

4>k =0.0

4>. = 1.0

i = I

6,0

FIG. I. The influences of anisotropy or material at the natural frequency.

and

(52)

then the substitution of equations (30) and (32) into equation (52) yields

C i = -D i = 0, (i = I, 2, ... ),

(53/

It is readily determined from equations (30), (32) and (33) that

(54)

"H = o.
The motion of this particular mode is associated with the motion wherein each transverse

section of the cylinder rotates rigidly. This fact may be seen clearly from equation (541.
The natural frequencies associated with this kind of mode of motion are given by equation
(50). As the frequency of the driving force w approaches one of the values wo," given by
equation (44), the amplitude of oscillation K 1 grows without limit and a resonance occurs.
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FIG. 2. The effects of the rallo of radii at the natural frequencies.
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APPENDIX

Orthogonality of the eigenjimctiol1S

Suppose the differential operator of equation (12),

is to be defined on the domain [a, b] by the boundary conditions (25),

(~-~}u(r)1 = 0,
dr r r~"

r::::c {,

(A-I)

(A-21

where u is an element in the domain ofT. Assume u and r are the elements in the domain
of T; by definition the scalar product of two functions with respect to the positive weight
function r is

<1', TlI) = IV rr(Tu) dr. (A-31

"
With integration by parts and the use of conditions (A-2), the scalar product (A-3)

yields

[ dl'J [dZ'](z\Tu) == u(b) /'---- -I/(u) r~-- +(Tl',u),
dr rc-V dr r="

Then

<1', Tu) = (Tv, u)

where v satisfies the conditions

(A-4)

(A-51

(A-6)

These boundary conditions are equivalent to IA-2), Thus the operator T defined by
equations (A-I) and (A-2) is a self-adjoint operator with self-adjoint boundary conditions.
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THEOREM. If T is a self-adjoint operator with self-adjoint boundary conditions, the eigen­
functions of T form an orthogonal set.

PROOF. Let Uj and Uk be two arbitrary distinct eigenfunctions of the differential operator T,
and Aj and Ak be the corresponding eigenvalues. Thus

TUj = )'jUj and TUk = AkUk' (A-7)

From equation (A-S)

o= <Uj' Tuk) - <TUj, Uk)

= (Ak-AYUj,Uk)'

If Ak # Aj. equation (A-8) implies that <Uj' Uk) = O. Then the theorem is proven.

(Receil'ed26 March 1969: rel'ised23 June 1969)

(A-8)

A6cTpaKT--Pa6oTa KacaeTCH KpYTHnhH~x Kone6aHH~ B KOHeqHOll KpyrnoH Tpy6e H1 aHH1oTpolIHoro

Heop;HOpO,11HOrO MaTepllaJIa. fIOJIyqaeTCSI o6ll\ee pewcHlle 1a,l\aqll. TaK cB06o,l\Hble KaK II BbiHYlK,l\eHHble

KPYTHJIbHble KOJIc5aHIISI Tpy6 MOlKHO paccMaTplIBaTb B KaqeCTBe CrreW1aJIbHhlX CJIyqaeB 3a,Ll,a'lH. Onpe,11eJI­

lIlOTCSI 1Ha'leHHSI cBo6oAHbIX qaCTOT 1aKJIlOqalOll\I:IX BIIJJ;bl KOJIe6aHl1H BhICWIIX pll)J,OB "l\JIli TaKIIX reoMeT­

pWlecKMX rrapaMeTpoB KaK OTHoweHMe paAl:lyca Tpy6bllf ee JJ;m1Hbl. PeWalOTClI:, TaKlKe, 3Ha'ieHIHl cBo6oAHbIX

'1aCTOT B BblpalKeHI:ISlX p;nlI: pa3HbiX 1Ha'leHHH IIapaMeTpOB aHH30TpOIIHH. 11.HTepeCHO, 'ITO HaJ1I1'1l1e I..\eHT­

paJIbHOrO OTBepCTHlI: B Tpy6e He BbI3bIBaeT HHKororo 3<P<l>eKTa Ha cBo6o,l\HbIe '1aCTOThi lKeCTKoro peJKHMa.

B cny'lae Y1JIOBbIX BHAOB KOJIe6aHIIH, H1MeHSllOTClI: cBo6o,l\Hble qaCTOTbl C TOJIWHHOH Tpy6bI.


